Home    >   Primary Antibodies

Anti-ERK1/2

Mouse Monoclonal Antibody
Catalog No. M29-60EM




Catalog No. Pack Size Price (USD)
M29-60EM-25 25 ug $105
M29-60EM-100 100 ug $325
M29-60EM-BULK BULK Contact Us  


Overview:

ERK1 is a protein serine/threonine kinase that is a member of the extracellular signal-regulated kinases (ERKs) which are activated in response to numerous growth factors and cytokines (1). Activation of ERK1 requires both tyrosine and threonine phosphorylation that is mediated by MEK. ERK1 is ubiquitously distributed in tissues with the highest expression in heart, brain and spinal cord. Activated ERK1 translocates into the nucleus where it phosphorylates various transcription factors (e.g., Elk-1, c-Myc, c-Jun, c-Fos, and C/EBP beta). ERK2 is a protein serine/threonine kinase that is a member of the extracellular signal-regulated kinases (ERKs) which are activated in response to numerous growth factors and cytokines (1). Activation of ERK2 requires both tyrosine and threonine phosphorylation that is mediated by MEK. ERK2 is ubiquitously distributed in tissues with the highest expression in heart, brain and spinal cord. Activated ERK2 translocates into the nucleus where it phosphorylates various transcription factors (e.g., Elk-1, c-Myc, c-Jun, c-Fos, and C/EBP beta).

References:


1. Boulton, TG. et al: Purification and properties of extracellular signal-regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase. Biochemistry. 1991 Jan 8;30(1):278-86.


Specificity:

Recognizes the ERK1 and ERK2 protein


Cross Reactivity:

Western blot ERK1 and ERK2 from human cells

ERK1 and ERK2 from other species may also be detectable.


Host / Isotype / Clone#:

Mouse, IgG1, E31R


Immunogen:

Human full length recombinant ERK1


Purification:

Affinity Chromatography


Stability:

Store at 4°C (add 0.1% NaN3) for several months, and at -20°C for longer periods. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For optimal performance, avoid repeated handling and multiple freeze/thaw cycles.


Sample Data:

Representative western blot (1:1000) with Anti-ERK1/2 using 10 µg and 30µg of Hela cell lysate.



Product Datasheets



 Li Saiqun et al., RAS/ERK Signaling Controls Proneural Genetic Programs in Cortical Development and Gliomagenesis Journal of Neuroscience February 2014 10.1523/JNEUROSCI.4077-13.2014

 Tonga Junfeng et al., Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function Molecular and Cellular Biology November 2013 10.1128/MCB.00822-13

 E. Franklin Norah et al., Differential phosphorylation of the phosphoinositide 3-phosphatase MTMR2 regulates its association with early endosomal subtypes Journal of Cell Science February 2013 10.1242/jcs.113928

 Tyler Moore et al., IRF3 and ERK MAP-kinases control nitric oxide production from macrophages in response to poly-I:C FEBS Letters September 2013 10.1016/j.febslet.2013.07.025

 Yanga Shuping et al., Phosphorylation of KIBRA by the extracellular signal-regulated kinase (ERK)?ribosomal S6 kinase (RSK) cascade modulates cell proliferation and migration Cellular Signaling February 2014 10.1016/j.cellsig.2013.11.012

 Neise Denise et al., Evidence for a differential modulation of p53-phosphorylating kinases by the cyclin-dependent kinase inhibitor p21WAFI/C1P1 Cell Cycle September 2010 10.4161/cc.9.17.12799

 AL Lasek et al., The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation. PLoS One February 2016 10.1371/journal.pone.0150225

 Tong Junfeng et al., Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation PLoS One January 2016 10.1371/journal.pone.0147103

 N Sato et al., MEK and PI3K catalytic activity as predictor of the response to molecularity targeted agents in triple-negative breast cancer Biochemical and Biophysical Research Communications August 2017

 Bhandaria Deepali et al., Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration?proliferation dichotomy PNAS July 2015 10.1073/pnas.1514157112

 R Pal et al., Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis Sci Rep June 2017 10.1038/s41598-017-04528-5

 R Pal et al., Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis Sci Rep June 2017 10.1038/s41598-017-04528-5

 K Fujita et al., HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Science Reports August 2016 10.1038/srep31895


RESEARCH AREAS

Angiogenesis, Apoptosis/Autophagy, Cancer, Cardiovascular Disease, ERK/MAPK Pathway, Invasion/Metastasis, Neurobiology


RELATED PRODUCTS


  ERK2, Unactive, M28-14U

  ERK1, Active, M29-10U

  ERK1, Unactive, M29-14G

  ERK1, Active, M29-10G


SIGNALCHEM BIOTECH INC.


About

Terms of Service

Privacy Policy

Get the latest resources, updates and offers in your inbox